





Constanta 4<sup>th</sup> of June, 2025





- **1. About participants**
- 2. Common Module IMINT/GEOINT ANALYSIS
- **3. KA2 project DIGITAL MATHEMATICS APPLIED IN DEFENCE AND SECURITY EDUCATION**
- 4. Ballistics CM (internal, external, terminal)
- 5. Integrated Avionics and Weapon Systems: Simulation, Testing and Field Deployment for UAV Platforms CM draft
- 6. Innovation network





### PARTICIPANTS



AT TMA, BG NMU – Shumen, BG NMU – Veliko Tarnovo, CA MoD, ES SAFSA, GR HAFA, HR DSU, HU UOPS, IT MOD, PL AWL, PL WAT, PT PMA, PT PAA, RO ANMB, RO MTA





#### **Common Module IMINT/GEOINT ANALYSIS**

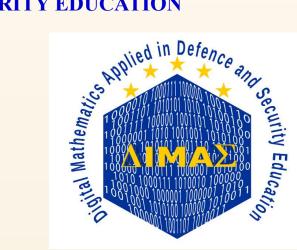
#### - Blended Intensive Programme - 23rd of June - 4th of July, 2025

| nes               | Knowledge                   | <ul> <li>Describe the basic concepts of GEOINT related to military training in security and defence.</li> <li>Identify the methods based on the fusion or integration of multiple forms of data collected from satellite and airborne sensors, along with a wide variety of other digital geographic information.</li> </ul> |
|-------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -earning outcomes | Skills                      | <ul> <li>Apply GEOINT/IMINT analyses to provide critical spatial information to a decision-making process that is necessary for meaningful actions and decisions.</li> <li>Design and implement scenarios based on Geospatial Intelligence (GEOINT) analysis and exploitation of EO and SAR HR Imagery.</li> </ul>           |
| ľ                 | Responsibility and autonomy | <ul> <li>Analyse the quality of scenarios based on IMINT/GEOINT concepts.</li> <li>Examine the correctness of the use of IMINT/GEOINT concepts in the decision-making process of the military actions or peacekeeping missions.</li> </ul>                                                                                   |





### KA2 project DIGITAL MATHEMATICS APPLIED IN DEFENCE AND SECURITY EDUCATION


- Conclusions about the previous working packages of the project
- Dissemination of the DIMAS Survey

### **SURVEY FOR TEACHERS**

Survey of Available Digital Mathematics Tools

We will be very grateful if you share the link with teachers who teach Mathematics and related applications. Access to a Google profile is required.

https://forms.gle/2YiiiqpZtuUjSRPY6









#### **Ballistics CM (internal, external, terminal)**

| nes               | Knowledge                   | <ul> <li>Demonstrate understanding of the principles and phenomena<br/>governing interior, exterior, and terminal ballistics, with a focus on<br/>the operational characteristics of ballistic systems used in army, air,<br/>and naval forces.</li> <li>Explain the physical and mathematical models underlying the<br/>trajectory, stability, and impact behaviour of projectiles in various<br/>ballistic phases, adapted to both small- and large-calibre weapon<br/>systems.</li> </ul> |
|-------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning outcomes | Skills                      | <ul> <li>Analyse the ballistic performance of different weapon systems using appropriate theoretical and computational tools, including trajectory simulation and impact analysis for defence and security applications.</li> <li>Evaluate the performance of army, air, and naval armament systems, integrating considerations specific to interior, exterior, and terminal ballistics.</li> </ul>                                                                                          |
| Le                | Responsibility and autonomy | <ul> <li>Demonstrate autonomy in conducting ballistic assessments and simulations to support informed decisions regarding the use, adaptation, or development of weapon systems in various operational contexts.</li> <li>Assume responsibility for the accuracy, safety, and ethical implications of applying ballistic knowledge in the design and evaluation of defence and security technologies.</li> </ul>                                                                             |





Integrated Avionics and Weapon Systems: Simulation, Testing and Field Deployment for UAV Platforms – CM draft

- Understand integrated avionics architectures in UAV platforms
  - Operate and evaluate SITL/HITL simulations
- Apply practical skills in real UAV deployments and data interpretation
- Draw functional links between avionics and weapons system interfaces





- Innovation Network Ideas in close cooperation with LoD-14 & LoD-09
- Optoelectronics for defence and security CM 1st round of debates





**QUESTIONS?** 

**SUGGESTIONS?** 

**RECOMMENDATIONS?**